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Abstract
It has been conjectured that statistical properties of zeros of the Riemann zeta
function near z = 1/2+iE tend, as E → ∞, to the distribution of eigenvalues of
large random matrices from the unitary ensemble. At finite E, numerical results
show that the nearest-neighbour spacing distribution presents deviations with
respect to the conjectured asymptotic form. We give here arguments indicating
that to leading order these deviations are the same as those of unitary random
matrices of finite dimension Neff = ln(E/2π)/

√
12β, where β = 1.573 14 . . .

is a well-defined arithmetic constant.

PACS numbers: 02.10.Yn, 05.45.Mt

1. Introduction

The study of connections between random matrix theory and properties of the Riemann zeta
function, ζ(z), has recently known significant developments [1, 2]. A central point is Hugh
Montgomery’s (generalized) conjecture [3] that in the asymptotic limit (high on the critical
line for ζ(1/2 + iE)), the fluctuation properties of non-trivial Riemann zeros are the same as
for the circular unitary ensemble (CUEN) of N × N random matrices (with Haar measure)
in the limit of large dimensionality, N → ∞. In particular, the normalized pair correlation
function of the Riemann zeros with E → ∞ is conjectured to be

R2(s) = 1 −
( sin πs

πs

)2
, (1)

where s is the unfolded distance between zeros (i.e. the mean spacing is set to 1).
Nowadays, the theory of random matrices is used in number theory to obtain deep

conjectures about the moments of zeta functions and the statistical properties of their zeros
(see e.g. [4]). These conjectures are at present beyond the reach of exact methods and their
validity and acceptance are largely based on large-scale numerical calculations.
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Figure 1. Nearest-neighbour spacing distribution of the Riemann zeros located in a window near
E = 2.504 1178 × 1015. (a) Numerical results (dots, from Odlyzko) compared to the asymptotic
CUE curve (full line, almost indistinguishable). (b) Difference between the numerical result and
the asymptotic CUE curve (dots) compared to the difference between the spacing distribution of
CUE matrices of size N0 = 33.62 (see equation (3)) and the asymptotic curve (dashed line).

A prominent example of this is the work of Andrew Odlyzko who, since the late 1970s,
started accurate and extensive numerical computations of Riemann zeros [5]. One of his
main results is that in the limit E → ∞, correlation functions of Riemann zeros do agree
with random matrix predictions. For instance, in figure 1(a) the density distribution p(s)

of spacings among consecutive zeros of ζ(1/2 + iE) (called the nearest-neighbour spacing
distribution in the random matrix literature) is plotted for a billion zeros around the 1016 th zero.
The agreement with the asymptotic CUE prediction p0(s) (or GUE, which is asymptotically
equivalent) is remarkable.

To study the approach to asymptotics, it is appropriate to look at the difference

δp(s) = p(s) − p0(s) (2)

between the computed and the conjectured distributions (see figure 1(b)). Though this
difference is small (of the order of 10−2), it has a clear structure with a nontrivial s dependence.

One may wonder how this difference compares with the one obtained within the CUEN

random matrix theory, namely the difference between the asymptotic and the finite N
calculation. A natural assumption would be to choose N = N0 where

N0 = ln

(
E

2π

)
. (3)

This matrix size is obtained by equating the local density of the zeros at height E along the
critical line to the density of eigenvalues of the N ×N unitary matrix (cf [1]). This dimensional
correspondence has been successful when comparing statistical properties of ζ(1/2 + iE) with
those of characteristic polynomials of CUEN matrices of size N = N0 [1].

The Riemann zeros in figure 1 are located in a window around E = 2.504 1178 × 1015,
which gives N0 = 33.6188. The difference between the finite N (with N = N0) and
the asymptotic nearest-neighbour spacing distribution is represented by a dashed line in
figure 1(b) (in all numerical calculations the integer N is taken as the nearest integer to the
theoretical estimate). Though the functional form of the correction is qualitatively correct, its
amplitude is clearly too small (by a factor of order 20). In his paper [5], Odlyzko commented:
‘Clearly there is structure in the difference graph, and the challenge is to understand where
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it comes from’. The purpose of this note is to explain this difference by using the whole
conjectured form of correlation functions of the Riemann zeros.

In section 2 the two-point correlation function of the Riemann zeros obtained in [6] is
considered. By expanding it for small values of the argument, it is demonstrated that to leading
order in the small parameter 1/ρ, where ρ is the average density of zeros, the correction term
is the same as for CUEN unitary random matrices with a well-defined value of N = Neff (cf
equation (18)). In section 3 we argue that the first sub-leading corrections in all correlation
functions of the Riemann zeros are reduced to a change of the random matrix kernel only.
These corrections happen to be the same as those of CUEN matrices of size N = Neff . In
particular, this leads to the conclusion that the leading correction to the nearest-neighbour
spacing distribution of the Riemann zeros is the same as for CUEN matrices with the cited
value of N. We have checked numerically that this agrees well with Odlyzko’s data. In
the appendix the expansion of the three-point function of the Riemann zeros is worked out
explicitly. It is shown that the dominant correction terms result again from the change of the
kernel.

2. Two-point correlation function

A heuristic formula for the two-point correlation function of the Riemann zeros was obtained
by Bogomolny and Keating in [6] using the Hardy–Littlewood conjecture of the distribution
of prime pairs (for more details see [7, 8]). It states that the two-point function of Riemann
zeros, r2(ε), is the sum of three terms

r2(ε) = ρ2 + r
(diag)

2 (ε) + r
(off)
2 (ε), (4)

where ρ is the smooth asymptotic density of zeros

ρ = 1

2π
ln

(
E

2π

)
, (5)

and the diagonal, r
(diag)

2 (ε), and off-diagonal, r
(off)
2 (ε), parts are given by the following

convergent expressions:

r
(diag)

2 (ε) = − 1

4π2

∂2

∂ε2
[ln|ζ(1 + iε)|2] − 1

4π2

∑
p

(
ln2p

(p1+iε − 1)2
+ c.c.

)
(6)

and

r
(off)
2 (ε) = 1

4π2
|ζ(1 + iε)|2 e2π iρε

∏
p

[
1 − (piε − 1)2

(p − 1)2

]
+ c.c. (7)

Here, the summation and product are taken over all primes p.
The unfolded two-point correlation function is obtained by measuring distances between

zeros in units of the local mean spacing,

R2(s) = 1

ρ2 r2

(
s

ρ

)
. (8)

In [8] it was checked numerically that these formulae agree very well with Odlyzko’s results
for the two-point correlation function of Riemann zeros.

We are interested in the corrections to the asymptotic behaviour of R2(s) in the limit
when E → ∞. In this limit ρ → ∞ and the argument of r2 in equation (8) becomes small
(keeping s finite). Therefore, one can expand r2(ε) for ε � 1. There are two types of terms
in this expansion. The first comes from the convergent sum and product, and its computation
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is straightforward. The second corresponds to the expansion of ζ(1 + x) when |x| → 0 and
can be obtained from the known series

ζ(1 + x) = 1

x
+

∞∑
n=0

(−1)n

n!
γnx

n,

where γn are the Stieljes constants

γn = lim
m→∞

(
m∑

k=1

lnnk

k
− lnn+1m

m + 1

)
.

In particular, γ0 ≈ 0.577 216, and γ1 ≈ −0.072 816.
Collecting the first two terms in the expansion, one gets

r
(diag)

2 (ε) = − 1

2π2ε2
− β

2π2
+ O(ε2) (9)

and

r
(off)
2 (ε) = 1

4π2

[
1

ε2
+ β + iδε + O(ε2)

]
e2π iρε + c.c., (10)

where β and δ are real constants given by the following convergent sums:

β = γ 2
0 + 2γ1 +

∑
p

ln2p

(p − 1)2
≈ 1.573 14 (11)

and

δ =
∑

p

ln3p

(p − 1)2
≈ 2.3157. (12)

The unfolded two-point correlation function takes, therefore, the form

R2(s) = 1 − sin2(πs)

π2s2
− β

π2ρ2 sin2(πs) − δ

2π2ρ3 s sin(2πs) + O(1/ρ4). (13)

Equation (13) expresses the two-point correlation function of Riemann zeros as the asymptotic
random matrix result given by equation (1) plus corrections proportional to inverse powers of
the average density of zeros.

To interpret this result, it is convenient to analyse the corrections to the asymptotic
two-point function (1) for the circular unitary ensemble (CUEN) with finite N.

For N-dimensional CUEN matrices, it is known that the unfolded two-point correlation
function has the following form [9]:

R
(CUEN )
2 (s) = 1 −

(
sin(πs)

N sin(πs/N)

)2

. (14)

Expanding this expression in powers of 1/N , one gets

R
(CUEN )
2 (s) = 1 − sin2(πs)

π2s2
− 1

3N2
sin2(πs) − (πs)2

N4
sin2(πs) + O(1/N6). (15)

This formula expresses the correlation function as the asymptotic result, equation (1), plus
corrections proportional to inverse even powers of the matrix dimension.

The comparison of equations (15) and (13) shows that the leading terms coincide, as
conjectured by Montgomery. To relate sub-leading terms we proceed as follows. In fact, up
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to O(1/ρ4) in equation (13), the term of order 1/ρ3 can be absorbed in the second term by
rescaling the s variable

R2(s) = 1 − sin2(πs)

π2s2
− β

π2ρ2 sin2(παs) + O(1/ρ4), (16)

where

α = 1 +
δ

2πρβ
= 1 +

C

ln(E/2π)
, (17)

with C = δ/β ≈ 1.4720.
The comparison of equations (15) and (16) shows that

(i) To leading order in 1/ρ, the two-point correlation function of the Riemann zeros is
the same as the one of eigenvalues of random CUEN matrices of effective dimension
N = Neff , with

Neff = πρ√
3β

= ln(E/2π)√
12β

, (18)

(ii) the next-to-leading order is obtained by rescaling the variable s in the first correction term
according to

s → αs. (19)

Here, the values of β and α are defined by equations (11) and (17) respectively.
The effective matrix size obtained from our analysis is, therefore, different from N0 as

given by equation (3), the relation between them being a constant multiplicative arithmetic
factor Neff = (12β)−1/2N0 ≈ 0.230 158 ln(E/2π).

For the two-point function, this result is just a reformulation of the first terms of the
expansion of equations (6) and (7). In the following section, we argue that it applies to all
correlation functions of the Riemann zeros and, in particular, to the nearest-neighbour spacing
distribution.

3. The nearest-neighbour spacing distribution

In general, to compute the nearest-neighbour spacing distribution, it is necessary to know
correlation functions with an arbitrary number of points. Though for the Riemann zeros there
exist heuristic methods which permit, in principle, to obtain all correlation functions [2, 7, 10],
the computations are cumbersome (cf the appendix) and we follow here another path.

It is well known [9] that, within random matrix theory, correlation functions of unitary
ensembles are given by the determinant of a certain kernel K:

Rn(x1, . . . , xn) = det(K(xi, xj ))|i,j=1,...,n. (20)

For the standard unitary ensemble (GUE) of random matrices in the universal limit, the kernel
is [9]

K0(s) = sin(πs)

πs
. (21)

It is this kernel which leads to all universal random matrix predictions in the bulk of the
spectrum.

For other ensembles the kernel may be different. In particular, for CUEN of random
unitary matrices, the kernel has the form [9]

KN(x, y) = sin(π(x − y))

N sin(π(x − y)/N)
. (22)
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When N → ∞ this kernel can be expanded in inverse powers of N

KN(x, y) = K0(x − y) +
1

N2
K1(x − y) + O(1/N4), (23)

with the first correction, K1(s), being

K1(s) = πs

6
sin(πs). (24)

Some physical arguments [11] indicate that to leading order and under quite general conditions,
deviations from standard random matrix theory in systems with no time reversal invariance are
reduced to a change of the kernel only. The correction term is the same as for CUEN matrices
with a certain effective matrix size which plays the role of the expansion parameter.

From equation (13), it follows that the two-point function of the Riemann zeros can be
rewritten in the following form:

R2(s) = 1 −
(

sin πs

πs
+ s

β

2πρ2 sin(πs) + s2 δ

2πρ3 cos(πs) + O(1/ρ4)

)2

, (25)

from which one finds that up to order 1/ρ4 this function can be written in the determinantal
form

R2(s) =
∣∣∣∣ 1 K(s)

K(s) 1

∣∣∣∣ , (26)

with the kernel

K(s) = K0(s) + k1(s). (27)

Here, K0(s) is the universal kernel (21) and k1(s) is the effective correction to the universal
result which, neglecting terms of order 1/ρ4, reads

k1(s) = s
β

2πρ2 sin(πs) + s2 δ

2πρ3 cos(πs) = πs

6N2
eff

sin(παs), (28)

where Neff and α are the same as in equations (18) and (17) respectively. As expected, the
dominant correction has the form as for CUEN matrices with N = Neff .

In the appendix, we demonstrate that leading correction terms in the expansion of the
three-point correlation function of the Riemann zeros result from exactly the same change of
the kernel. Therefore, we conjecture that, to leading order, all correlation functions of the
Riemann zeros are the same as those of CUEN matrices with effective dimension given by
equation (18). In particular, it means that the nearest-neighbour spacing distribution of the
Riemann zeros can be calculated as follows.

First, find the expansion of the nearest-neighbour spacing distribution for CUEN random
unitary matrices in inverse powers of N, namely3

p(CUEN )(s) = p0(s) +
1

N2
p

(CUE)
1 (s) + O(1/N4). (29)

Second, to leading order, at a given height E on the critical line, replace in this equation N
by Neff given by equation (18). Finally, approximate the next-to-leading term by rule (ii) (cf
equation (19)).

In such approximation, the nearest-neighbour distribution for the Riemann zeros equals
the universal random matrix result, p0(s), plus the correction terms δp(s) where

δp(s) = 1

N2
eff

p
(CUE)
1 (αs) + O

(
1
/
N4

eff

)
. (30)

3 Note that the corresponding expansion for GUEN is different and includes, in particular, a term proportional to
(−1)N/N (cf [12], in particular the end of sections V.A and V.D)
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Figure 2. (a) Difference between the nearest-neighbour spacing distribution of the Riemann
zeros and the asymptotic CUE distribution for a billion zeros located in a window near
E = 2.504 1178 × 1015 (dots), compared to the theoretical prediction equation (30) (full line).
The dashed line does not include the rescaling of s. (b) Difference between the numerical Riemann
values (dots) and the full curve (theory) of part (a).

The expansion (29) is difficult to treat analytically. To determine p
(CUE)
1 (s), we rather use the

following numerical method.
For CUEN , the nearest-neighbour spacing distribution may be expressed as the second

derivative [9] of E(s):

p(CUEN )(s) = d2E(s)

ds2
, (31)

where E(s) is the probability of finding a hole of size s in the spectrum. It is given by the
following determinant [9]:

E(s) = det

[
δjk − sin(πs(j − k)/N)

π(j − k)

]
, 1 � j, k � N. (32)

This determinant can be calculated numerically and the correction term is then obtained by
computing p

(CUE)
1 (s) = N2[p(CUEN )(s) − p0(s)] for increasing values of N. This procedure is

quite robust and a good convergence is found for N of order 40. A more refined method would
be to use a nonlinear differential equation for p(CUEN )(s) as derived in [12].

Figure 2(a) shows the comparison between the numerical results and equation (30) for
zeros located on a window around E = 2.504 1178 × 1015 (as in figure 1). The effective
matrix size is Neff = 7.7376 (instead of N0 = 33.6188), and α = 1.0438. The agreement is
quite good and shows that Neff is the correct effective matrix size in this case. For comparison,
we have plotted as a dashed curve the theoretical formula (30) without the rescaling of the s
variable.

Figure 2(b) is a plot of the difference between Odlyzko’s results and the prediction (30).
There is still some structure visible, which might be attributed to the O(N−4

eff ) correction. To
test the convergence, we have made the same plot but now using one billion zeros located on
a window around E = 1.306 643 44 × 1022, which corresponds to Neff = 11.2976 (instead
of N0 = 49.0864) and α = 1.0300 (figure 3(a)). Now the agreement is clearly improved.
The difference between the prediction (30) and the numerical results, plotted in figure 3(b),
displays a structureless remain.

These results clearly demonstrate that heuristic formulae for statistical distributions of
the Riemann zeros permit to explain very well even tiny details of large-scale numerical
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Figure 3. Same as in figure 2 but for a billion zeros located in a window near E =
1.306 643 44 × 1022.

calculations of these zeros. This agreement gives additional support to the conjectures on
which these formulae are based.

4. Conclusion

Using heuristic arguments, we derive a formula which includes corrections to the nearest-
neighbour spacing distribution of the Riemann zeta function zeros. We argue that to leading
order the correction is the same as for random matrices from the circular unitary ensemble of
size Neff ≈ 0.230 158 ln(E/2π). We propose to describe the next-to-leading order correction
as a rescaling of the dominant term.

Two main conjectures have been used. The most important is the explicit expression for
the two-point correlation function of the Riemann zeros (equations (6) and (7)) obtained in [6].
The second is a statement that the leading order deviations from random matrix predictions
reduce to a change of the kernel. This has been checked for two- and three-point functions
and presumably can be extended to n-point functions.

Let us finally mention that at a finite height on the critical line, the appropriate symmetry
group of the Riemann zeta function is conjectured to be USp(2N) [13]. The symmetry
dependence of correction terms clearly deserves further investigation.

Acknowledgment

We are thankful to A Odlyzko for useful discussions as well as for providing us with
unpublished data.

Appendix. Expansion of the three-point correlation function

Using a heuristic method proposed in [7], it can be demonstrated [14] that the three-point
correlation function of the Riemann zeros has the following form:

r3(e1, e2, e3) = ρ3 + ρr
(c)
2 (e12) + ρr

(c)
2 (e23) + ρr

(c)
2 (e31) + r

(c)
3 (e1, e2, e3). (A.1)

Here and below, the notation eij indicates the difference of ei and ej :

eij = ei − ej . (A.2)
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In the above expression, r
(c)
3 (e1, e2, e3) is the connected part of the three-point function that is

expressed as the sum of two terms:

r
(c)
3 (e1, e2, e3) = r

(diag)

3 (e1, e2, e3) + r
(off)
3 (e1, e2, e3), (A.3)

where the diagonal part r
(diag)

3 (e1, e2, e3) is given by the convergent sum over prime numbers:

r
(diag)

3 (e1, e2, e3) = − 1

(2π)3

∑
p

ln3p

(
1

(p1−ie12 − 1)(p1−ie13 − 1)

+
1

(p1−ie21 − 1)(p1−ie23 − 1)
+

1

(p1−ie32 − 1)(p1−ie31 − 1)

)
+ c.c., (A.4)

and the oscillating part r
(off)
3 (e1, e2, e3) contains both convergent sums and products and

formally divergent parts which can be expressed through values of the Riemann zeta function
on the axis Re(s) = 1:

r
(off)
3 (e1, e2, e3) = − 1

(2π i)3
e2π iρe12 |ζ(1 + ie12)|2

∏
p

(
1 − (1 − pie12)2

(p − 1)2

)

×
[

∂

∂e3
ln

∣∣∣∣ζ(1 + ie32)

ζ(1 + ie31)

∣∣∣∣
2

− i
∑

p

ln p

(
pie12 − 1

(p1+ie23 − 1)(p1+ie13 − 1)

+
pie12 − 1

(p1−ie13 − 1)(p1−ie22 − 1)

+
(1 − pie12)2

p − 2 + pie12

(
1

p1−ie31 − 1
+

1

p1−ie23 − 1

))]
+ permutations. (A.5)

In the last expression, only one term proportional to e2π iρe12 is written explicitly. The whole
expression contains two other terms proportional to e2π iρe23 and e2π iρe31 corresponding to the
cyclic permutations of three indices 1, 2 and 3 plus the complex conjugation of the result.
Equations (A.4) and (A.5) may also be obtained from the ratio conjecture [15].

The unfolding of the three-point function (the analogue of equation (8)) corresponds to
the following scaling transformation:

R3(s1, s2, s3) = 1

ρ3 r3

(
s1

ρ
,
s2

ρ
,
s3

ρ

)
. (A.6)

From equation (A.4), it follows that the diagonal part of the three-point correlation function
with eij = sij /ρ where sij ≡ si − sj is fixed and ρ → ∞ to leading order is

R
(diag)

3 (s1, s2, s3) = − 6

(2πρ3)3

∑
p

ln3p

(p − 1)2
= − 3

4π3
δ′, (A.7)

where

δ′ = δ

ρ3 , (A.8)

with δ as in equation (12).
For the oscillatory part (A.5) in the same limit, one has

R
(off)
3 (s1, s2, s3) = − 1

(2π i)3
e2π is12

(
1

s2
12

+ β ′ + iδ′s12

)

×
[

∂

∂s3

(
−2 ln s32 + 2 ln s31 +

γ 2
0 + 2γ1

ρ2

(
s2

32 − s2
31

))
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+
2s12

ρ2

∑
p

ln2p

(p − 1)2
+

3is2
12

ρ3

∑
p

ln3p

(p − 1)2

]

= − 1

(2π i)3
e2π is12

(
1

s2
12

+ β ′ + iδ′s12

) [
−2

s12

s23s31
+ 2s12β

′ + 3iδ′s2
12

]

= 1

(2π i)3
e2π is12

(
1

s12s23s31
− 2β ′

(
1

s12
+

1

s23
+

1

s31

)
+ iδ′

(
2

s2
12

s23s31
− 3

))
+ permutations . (A.9)

Here,

β ′ = β

ρ2 . (A.10)

To check that this result corresponds to the change of the kernel (28), one needs to calculate
the first correction to the determinantal formula

R3(s1, s2, s3) =
∣∣∣∣∣∣

1 K12 K13

K21 1 K23

K31 K32 1

∣∣∣∣∣∣ , (A.11)

where Kij = K0(sij ) + k1(sij ) (Note that K(0) = 1). For the calculations below, it is
convenient to rewrite the correction term (28) as follows:

k1(s) = 1

2π i
(a(s) e2π is − a∗(s) e−2π is), (A.12)

with

a(s) = 1
2 (β ′s + iδ′s2). (A.13)

Expanding the determinant and taking into account the correction term k1 only to first order,
one gets

R3(s1, s2, s3) = 1 − (K12K21 + K23K32 + K31K13) + K12K23K31 + K21K13K32

= R
(0)
3 (s1, s2, s3) + r

(1)
3 (s1, s2, s3), (A.14)

where R
(0)
3 (s1, s2, s3) is the determinant (A.11) computed using the standard kernel (21) and

r
(1)
3 (s1, s2, s3) is the first correction:

r
(1)
3 (s1, s2, s3) = −2

(
K

(0)
12 k

(1)
21 + K

(0)
23 k

(1)
32 + K

(0)
31 k

(1)
13

)
+ 2

(
K

(0)
12 K

(0)
23 k

(1)
31 + K

(0)
12 k

(1)
23 K

(0)
31 + k

(1)
12 K

(0)
23 K

(0)
31

)
. (A.15)

Here, K
(0)
ij = K0(sij ) and k

(1)
ij = k1(sij ). The first three terms in this sum are corrections to

the two-point correlation function. It has been checked in the previous section that they take
the correct form. Only the last three terms are non-trivial.

The following calculations are straightforward:

k
(1)
12 K

(0)
23 K

(0)
31 = 1

(2π i)3s23s31
(a12 e2π is12 − a∗

12 e−2π is12)(e2π is23 − e−2π is23)(e2π is31 − e−2π is31)

= 1

(2π i)3s23s31
[a12 − a∗

12 + a12(e
2π is12 − e−2π is23 − e−2π is31)

− a∗
12(e

−2π is12 − e2π is23 − e2π is31)].

Here, aij = a(sij ) where a(s) is given by equation (A.13).
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Computing the two other terms and combining similar exponents, we obtain that the
connected part of the corrections has the form

r
(1)
3 (s1, s2, s3) = 2

(2π i)3

(
a12 − a∗

12

s23s31
+

a23 − a∗
23

s12s31
+

a31 − a∗
31

s12s23

)

+
2

(2π i)3
e2π is12

(
a12

s23s31
+

a∗
23

s12s31
+

a∗
31

s12s23

)
+ permutations.

Using equation (A.13), one concludes that to first order in k1 the three-point function changes
as follows:

r
(diag)

3 (s1, s2, s3) = − δ′

4π3

(
s2

12

s23s31
+

s2
23

s12s31
+

s2
31

s12s23

)

= − δ′

4π3s12s23e31

(
s3

12 + s3
23 + s3

31

)
and

r
(off)
3 (s1, s2, s3) = 1

(2π i)3
e2π is12

[
β ′

(
s12

s23e31
+

s23

s12s31
+

s31

s12s23

)

+ iδ′
(

s2
12

s23s31
− s2

23

s12s31
− s2

31

s12s23

)]
+ permutations.

By definition, one has s12 + s23 + s31 = 0. Therefore,

s3
31 = −(s12 + s23)

3 = −s3
12 − s3

23 − 3s2
12s23 − 3s12s

2
23. (A.16)

Consequently,

s3
12 + s3

23 + s3
31 = −3(s12 + s23)s12s23 = 3s12s23s31. (A.17)

From these relations, one finally gets

r
(diag)

3 (s1, s2, s3) = − 3

4π3
δ′ (A.18)

and

r
(off)
3 (s1, s2, s3) = 1

(2π i)3
e2π is12

[
−2β ′

(
1

s12
+

1

s23
+

1

s31

)
+ iδ′

(
2

s2
12

s23s31
− 3

)]
+ permutations . (A.19)

These equations coincide exactly with equations (A.7) and (A.9). This proves that the three-
point correlation function of the Riemann zeros has, up to order 1/ρ3, the determinantal
form (A.11) as for standard random matrix ensembles but with the modified kernel as in
equations (27) and (28).
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